

www.jpsr.pharmainfo.in

An *in silico* Evaluation of Immunomodulators-in Multiple Sclerosis

Aswathy S S^{*1}, Merlin N J², Shaiju S Dharan³

Department of Pharmacology, Ezhuthachan College of Pharmaceutcial Sciences, Neyyattinkara

Abstract:

Immune-modulating drugs mainly used as first line agent for multiple sclerosis due to their high safety profile. Different therapeutic strategies are available for treatment of multiple sclerosis (MS) including Immunosuppressants, Immunomodulators, and monoclonal antibodiesfebuxostat, a xanthine oxidase inhibitor, ameliorated both relapsing-remitting and secondary progressive experimental autoimmune encephalomyelitispreventing neurodegeneration. Febuxostat is a non-purine selective xanthine oxidase (XO) inhibitor that is currently used for the treatment of gout. febuxostat decreases XO-mediated ROS production and improves mitochondrial function. febuxostat antecedently showed that treatment of ameliorated relapsing-remitting and secondary progressive subclasses of murine experimental autoimmune encephalomyelitis (EAE) by inhibiting the over production of ROS and reducing neurodegeneration.

Key words: Febuxostat, Probencid, Sulfinpyrazone, Docking, anti-inflammatory.

INTRODUCTION

Multiple sclerosis a chronic neuroinflammatory disease of characterized central the nervous system by and neurodegeneration, demyelination, astroglial proliferation, affecting both white and gray matter of neuronal cells. Clinically, MS is characterized by relapsing-remitting phenotypes and neuropathologic manifestations in which the patient experiences clinical attacks causing neurologic dysfunction including optic neuritis and transverse myelitis.^[1]

There is no single drug for multiple sclerosis. The management and slowing the progression of pathosis is the main aim of immunomodulating drugs. There are a spectrum of therapeutic strategies and specific agents for treatment of multiple sclerosis (MS). While immune-modulating drugs remain the first-line agents for MS predominantly due to their benign safety profile.^[2] One concept of these novel drugs is to hamper migration of immune cells towards the affected central nervous system (CNS).

Fingolimod is the first oral drug approved for MS.Inhibtion of egress of lymphocytes from lymph nodes is the main action of fingolimod and the prevention of inflammatory CNS foray by blocking adhesion molecule by the monoclonal antibody Natalizumab. The second approach is using highly specific monoclonal antibodies such as alemtuzumab (anti-CD52) rituximab/ocrelizumab (anti-CD20) for the dcepletion of T and B cells. Execution of inflammation in the nervous system is partially understood. An increased risk in patients include cardiac problems, depression, reduction of blood cells, allergic reactions and also leads to drug induced auto-immune disorders.^[3]

Nowadays new therapeutic drugs and stem cell therapy has advanced role in the treatment of MS. The long term use of current therapies is not treacherous and unsound. Herbal compounds, medicinal plants have antiinflammatory, antioxidant and repairing myelin lead to inhibition of inflammation.

MATERIALS AND METHODS

DOCKING

The interaction between the ligand and protein was determined by using Auto-dock vina Pyrx virtual screening tool.^[4]

• Preparation of Ligand

The 3D structure of the compound was obtained from Pubchem, which contains information about the small molecule and their biological activities.

Preparation of Protein Protein

Proteins are the macromolecule contains one or more amino acid residues. The 3D structure of the protein was obtained from PDB (Protein data bank).

• Conversion of ligand from SDF to PDB format

- Openbabel-2.3.2/obgui.exe was used.
- Protein preparation and molecular visualization
- pyMOL is software used for the both purposes. pyMOL can produce high quality 3D images of proteins.

RESULTS AND DISCUSSION

There are many compounds with poor bioavailability shows less effective against disease. To solve this problem, predicting bioavailability properties will be great advantage for drug development. Hence using computer based methods like docking tools were studied. Increased hydrogen bond interaction and binding affinity score express the strong binding of constituents with the selected receptor.

Immunomodulators and monoclonal antibodies is the main category of drug used in the treatment of multiple sclerosis. By using insilico studies showed that immunomodulating drugs has better affinity in their binding sites.Neurodegeneration in secondary progressive multiple sclerosis the main antecedent is oxidative stress and mitochondrial dysfunction.^[6]

Table 1 shows the hydrogen bond interactions and binding affinity of constituents with receptor (2Z64).Table 1- 2 gives the physicochemical properties, pharmacokinetics and drug likeness properties of the drugs febuxostat, probencid and sulfinpyrazone.

Table 1: Physicochemical properties of febuxostat

Physicochemical Properties	Febuxostat	
Formula	C16H16N2O3S	
Molecular weight	316.37 g/mol	
Num. heavy atoms	22	
Num. arom. heavy atoms	11	
Fraction Csp3	0.31	
Num. rotatable bonds	5	
Num. H-bond acceptors	5	
Num H-bond donors	1	
Molar Refractivity	85.10	
TPSA	111.45 Ų	

 Table 2: Pharmacokinetics of febuxostat

Pharmacokinetic Parameters	Febuxostat	
GI absorption	High	
BBB permeant	No	
P-gp substrate	No	
CYP1A2, 2C9 inhibitor	Yes	
Log K_p (skin permeation)	-5.46 cm/s	

 Table 3: Physicochemical properties of Probencid and Sulfinpyrazone

		S ann pJ r allonie				
Physicochemical Properties	Probencid	Sulfinpyrazone				
Formula	C13H19NO4S	C23H20N2O3S				
Molecular weight	285.36 g/mol	404.48 g/mol				
Num. heavy atoms	19	29				
Num. arom. heavy atoms	6	18				
Fraction Csp3	0.46	0.13				
Num H-bond donars	1	0				
Num H-bond acceptors	5	3				
Molar Refractivity	73.43	120.08				
TPSA	83.06 Ų	76.90 Ų				

 Table 4: Pharmacokinetics of Probencid and

 Sullfapyrazone

Sumapyrazone				
Pharmacokinetic Parameters	Probencid	Sulfinpyrazone		
GI absorption	High	High		
BBB permeant	No	Yes		
P-gp substrate	No	No		
CYP1A2 inhibitor	No	No		
CYP2C19	Yes	Yes		
CYP2D6,3A4 inhibitor	No	Yes		
$Log K_p$ (skin permeation)	-5.76 cm/s	-7.13 cm/s		

DOCKING IMAGES Molecular docking

Molecular docking is used to recognize and optimize drug candidates by examining and modelling molecular interactions between ligand and target macromolecules. Molecular docking are used to generate multiple ligand conformations and orientations and the most appropriate ones are selected.

Figure 1: Docking image of febuxostat

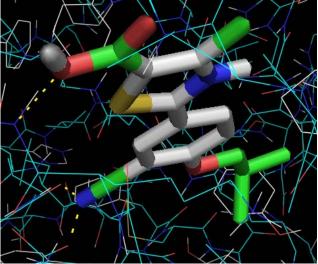


Figure 2: Docking image of Probencid

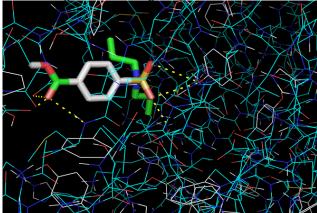
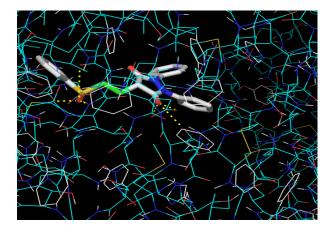



Figure 3: Docking image of Sulfinpyrazone

DOCKING SCORE		
DRUGS	DOCKING SCORE (kcal/mol)	HYDROGEN BOND
Febuxostat	-7.6	3
Probencid	-6.5	6
Sulfinpyrazone	-9.2	6

CONCLUSION

Computational tools may be helpful in finding the cause of this syndrome. Multiple sclerosis becoming more widespread in today's scenario and their diversity is increasing at high pace thus an effective and efficient treatment is an urgent need of present times. The study shows that immunomodulators is having best binding capacity with the 2Z64receptor.The binding affinity for immunomodulators with 2Z64 receptor is also greater. Thus we can conclude that immunomodulators can be used for the treatment of Multiple sclerosis.

REFERENCES

- Kolaviron protects the brain in cuprizone-induced model of experimental multiple sclerosis via enhancement of intrinsic antioxidant mechanisms: Possible therapeutic applications.GabrielOlaiyaOmotoso,IlejeIneloUkwubile, Leviticus Arietarhire, Fatima Sulaimon, Ismail TemitayoGbadamosi. Elsevier. 2018; 4(12):1-8.
- Use of C57BL/6N mice on the variety of immunological researchesyunKeun Song, DaeYoun HwangLaboratory Animal Research. 2017; 33(2): 119-123

- N. Sanadgol, F. Golab, A. Mostafaie, M. Mehdizadeh, M. Abdollahi, M. Sharifzadeh, H. Ravan. Ellagic acid ameliorates cuprizone-induced acute CNS inflammation via restriction of microgliosis and down-regulation of CCL2 and CCL3 proinflammatory chemokines.Journel of Cellular and Molecular Biology. 2016; 62 (12): 24-30
- Vincent Zoetea, Aurélien Grosdidier, Olivier Michielin Docking, virtual high throughput screening and in silico fragment-based drug design December 10, 2008; Accepted: January 11, 2009.
- A network meta-analysis Cochrane Systematic ReviewImmunomodulators and immunosuppressants for multiple sclerosis: a network meta-analysis Cochrane Systematic Review -Intervention Version published: 06 June 2013
- Honorat JA, Kinoshita M, Okuno T, Takata K, Koda T, Tada S, et al. Xanthine oxidase mediates axonal and myelin loss in a murine model of multiple sclerosis. PLoS One 2015.
- Sandra Meyer- Moock, You-Shan Feng, Mathias Maeurer, Franz Werner- Dippel, Thomas Kohlmann. Systematic Literature Review and Validity Evaluation of the Expanded Disability Status Scale (EDSS) and Multiple Sclerosis Functional Composite (MSFC) in patients with Multiple sclerosis. BioMed Central Neurology 2015.
- Sabine Pfeifenbring, Stefan Nessler, Christiane Wegner, Christine Stadelmann, Wolfgang Bruck. Remyelination After Cuprizone-Induced Demyelination Is Accelerated in Juvenile Mice. Journel of Neuropathology and Experimental Neurology. 2015; 74(8): 756-766.
- Gao P, Ding X, Khan TM, Rong W, Franke H, Illes P. P2X7 receptor-sensitivity of astrocytes and neurons in the substantiagelatinosa of organotypic spinal cord slices of the mouse depends on the length of the culture period. Neuroscience (2017) 349:195–207. doi:10.1016/j.neuroscience.2017.02.030
- yunKeun Song, DaeYoun Hwang. Use of C57BL/6N mice on the variety of immunological researches. Laboratory Animal Research. 2017; 33(2): 119-123.