In-vitro Studies on Phytochemical Screening of selected plant species of Vignan’s University campus, Vadlamudi, Andhra Pradesh

M.Praveen, T. Vijay Srikanth, S. Krupanidhi and R. Bharath Kumar*

Department of Biotechnology, Vignan’s University, Vadlamudi, Guntur-522213, Andhra Pradesh, India.

Abstract

The present work will focus on the importance of some of the selected plant species Mimusops elangi, Araucaria heterophylla, Callistemon lanceolatus, Capparis brevispina, Cassytha filiformis, Solidago chinensis and preliminary phytochemical analysis. Preliminary screening of phytochemicals is a valuable step, in the detection of the bioactive principles present in medicinal plants and subsequently may lead to drug discovery and development. In the present study, chief phytoconstituents of the six selected medicinal plants of different families were identified in order to relate their presence with bioactivities of the plants [1,2]. Adequate amount of extracts of plants were prepared by successive extraction and prepared with organic solvents such as distilled water, acetone, ethanol, methanol, n-hexane and petroleum ether. All plant extracts were subjected against the selected plant samples for their phytochemical screening. Out of these six plant samples (aqueous/methanol), 13 various phytochemical components were analyzed. All the data is recorded in this paper. The results are mostly in conformity with the medicinal uses and they are discussed.

Key words: In-vitro studies, phytochemical screening, plant species, Vignan’s University

INTRODUCTION:

Vignan’s University (VU) (formerly Vignan’s Engineering College is a premier institution affiliated to Jawaharlal Nehru Technological University in Andhra Pradesh). It is having the splendid avenue, imposing buildings and sprawling playgrounds, and the verdure in and around the campus. The college is a virtual haven of rural quiet and idyllic beauty. Since its inception in 1997, VU has been striving to promote high quality standards in technical education & research for the aspirants of Engineering Studies [4]. The most important of these bioactive constituents of plants are alkaloids, tannins, flavonoids and phenolic compounds [2]. Correlation between the phytoconstituents and the bioactivity of plant is desirable to know for the synthesis of compounds with specific activities to treat various health ailments and chronic diseases as well [1]. Owing to the significance in the above context, such preliminary phytochemical screening of plants is the need of the hour in order to discover and develop novel therapeutic agents with improved efficacy. Numerous research groups have also reported such studies throughout the world [4,8]. Thus, the present study deals with the screening based on phytochemical tests of six medicinal plants viz., species Mimosops elangi, Araucaria heterophylla, Callistemon lanceolatus, Capparis brevispina, Cassytha filiformis, Solidago chinensis for identifying their chemical constituents. All these plants possess different bioactivities which were later correlated with the presence of some specific phytoconstituents[1,5].

TOPOGRAPHY:

Vignan’s University is located in the serene environs of Vadlamudi on the Guntur - Tenali highway, about 14 km from Guntur and 11 km from Tenali. The nearest railway station Tenali is located on Chennai–Kolkata trunk line[4].

Brief enumeration and description of habit &habitat of selected Medicinal plant species for their phytochemical screening:

Scientific Name: Mimosops elengi L. (SAPOTACEAE)
Ln.: Madhupushpa, Bullet wood, Indian Medlar, Spanish cherry

Mimosops elengi L.

Distribution & uses
A medium-sized evergreen tree found in tropical forests in South Asia, Southeast Asia and northern Australia. The bark, flowers, fruits, and seeds of Bakula are used in Ayurvedic medicine in which it is purported to be astringent, cooling, anthelmintic, tonic, and febrifuge. It is mainly used for dental ailments such as bleeding gums, pyorrhea, dental caries, and loose teeth[1,4].

961
Scientific Name: **Araucaria heterophylla** (Salisb.)Franco (ARAUCARIACEAE)
Ln.: Monkey’s puzzle, Norfolk pine
Araucaria heterophylla (Salisb.)Franco
Distribution & uses
It is sometimes called a star pine, triangle tree or living Christmas tree, due to its symmetrical shape as a sapling. It is endemic to Norfolk Island, a small island in the Pacific Ocean between New Zealand and New Caledonia. Resin isolated from stem exudates showed anti-ulcerogenic activity, resin and isolated compounds showed variable cytotoxic activities against breast (MCF7) and colon (HCT116) cancer cell lines[20, 22]. Its leaves has the potential for a cheap and efficient biosorbent for toxic hexavalent chromium removal from natural and wastewaters[4,8].

Scientific Name: **Callistemon lanceolatus** R.Br. (MYRTACEAE)
Ln.: Lemon Bottle brush
Callistemon lanceolatus R.Br.
Distribution & uses
Tree. The entire genus is endemic to Australia but widely cultivated in many other regions and naturalized in scattered locations. *Callistemon* species have commonly been referred to as bottlebrushes because of their cylindrical, brush like flowers resembling a traditional bottle brush[4,14]. They are mostly found in the more temperate regions of Australia, especially along the east coast and typically favour moist conditions so when planted in gardens thrive on regular watering[3,5]. Some species are drought-resistant and some are used in ornamental landscaping elsewhere in the world.

Scientific Name: **Cassysya filiformis** L. (LAURACEAE)
Ln.: Dodder laurel, Love vine
Cassysya filiformis L.
Distribution & uses
Cassysya filiformis, common name love-vine, is a species of obligate parasitic vine. The species has a pantropical distribution encompassing the Americas, Indo-Malaya, Australasia, Polynesia and East Africa In the Caribbean region, it is one of several plants known as Love Vine because it has a reputation as an aphrodisiac. Plant as tonic, alterative, in bilious affections, chronic dysentery[20,29]. It was also reported as a beneficial medicine against the gonorrhoea, kidney ailments and as the diuretic[8,14].
Scientific Name: *Wedelia chinensis* (Osbeck.) Merr. *(COMPOSITAE)*

= *Solidago chinensis* Osbeck

Ln.: Chinese Wedelia, Birimagari

Wedelia chinensis (Osbeck.) Merr.

Distribution & uses:

It is scabrous procumbent perennial soft herb with high camphor like odour. Is procumbent, perennial herb found in wet places in Uttar Pradesh, Assam, Andhra Pradesh and along the coastal areas. It is found in plains district of Madras presidency, China and Japan. The species is widely used in traditional medicine, and investigated for use in contemporary medicine[1,15]. Generally whole plant is used for treating disease. Its various parts have been used as folklore medicine for treating various ailments like hepatoprotective efficacy, cholangue, jaundice, diarrhoea, cough, cephalahagia, diphtheria and pertussis etc[4,8,18].

MATERIALS AND METHODS

Vignan’s University has campus with a good number of plants. It includes landscaping gardens, exotic elements and natural forest elements, includes rare and endemic categories of trees, shrubs, herbaceous members, climbers and a good number of medicinal plant species like *Mimosops elangi*, *Araucaria heterophylla*, *Callistemon lanceolatus*, *Capparis brevispina*, *Cassytha filiformis*, *Solidago chinensis*. An inventory experimental study were conducted on selected most promising plant species which are having utilization of domestic, commercial samples.

The present work was conducted in Department of Biotechnology, Biochemistry laboratory of Vignan’s University, Vadlamudi to determine the Phytochemical composition of the above mentioned plant samples by the presence of tannins, flavonoids, terpenoids, saponins, sterols, phlobatannins, carbohydrates, glycosides, coumarins, alkaloids, proteins, emodins, anthraquinones, anthocyanins and leucoanthocyanins was done by the standard procedures prescribed by Bhattacharya (1956), Chhabra et.al (1984) and Harborne (1973, 1977)[6,7,12,13].

Collection and preservation of samples:

The leaves and bark was collected from the plants, washed under the tap water to remove the dust. Washed samples are cut into very small pieces which are shade dried for 10-15 days at room temperature to eliminate surface moisture. Dried leaves were grinded in an electric grinder to obtain powder which was then kept in plastic/paper bags for further use. Extracts of sample are prepared by taking of 20 gr. of sample in 200 ml. methanol. Each sample is tested for 13 components Results are given in Table-1.

TABLE:1

RESULTS OF PHYTOCHEMICAL SCREENING OF SOME SELECTED MEDICINAL PLANTS:

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Phytochemical constituents</th>
<th>Plant samples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mimosops elangi</td>
</tr>
<tr>
<td>1</td>
<td>Tannins</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>Flavonoids</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>Terpenoids</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>Saponins</td>
<td>_</td>
</tr>
<tr>
<td>5</td>
<td>Phlobatannins</td>
<td>_</td>
</tr>
<tr>
<td>6</td>
<td>Steroids</td>
<td>_</td>
</tr>
<tr>
<td>7</td>
<td>Carbohydrates</td>
<td>+</td>
</tr>
<tr>
<td>8</td>
<td>Glycosides</td>
<td>+</td>
</tr>
<tr>
<td>9</td>
<td>Alkaloids</td>
<td>_</td>
</tr>
<tr>
<td>10</td>
<td>Protiens</td>
<td>+</td>
</tr>
<tr>
<td>11</td>
<td>Anthraquinones</td>
<td>_</td>
</tr>
<tr>
<td>12</td>
<td>Anthocyanins</td>
<td>_</td>
</tr>
<tr>
<td>13</td>
<td>Leuco-Anthocyanins</td>
<td>_</td>
</tr>
</tbody>
</table>
Preparation of Plant samples for Phytochemical tests

Screening of the mentioned six selected medicinal plants for various phytochemical constituents were carried out using standard methods [9-11] as described here in the text.

1. **Tannins (Braymer’s Test)**
 - 2ml extract + 2ml H2O + 2-3 drops FeCl3 (5%)
 - Green precipitate

2. **Flavonoids**
 - 1ml extract + 1ml Pb(OAc)4 (10%)
 - Yellow coloration

3. **Terpenoids**
 - 2ml extract + 2ml (CH3CO)2O + 2-3 drops FeCl3 (5%)
 - Violet to Blue to Green coloration

4. **Saponins (Foam Test)**
 - (a) 5ml extract + 5ml H2O + heat Froth appears
 - (b) 5ml extract + Olive oil (few drops) Emulsion forms

5. **Steroids (Salkowski Test)**
 - 2ml extract + 2ml CHCl3 + 2ml H2SO4 (conc.)
 - Reddish brown ring at the junction

6. **Phlobatannins (Precipitate Test)**
 - 2ml extract + 2ml HCl (1%) + heat
 - Red precipitate

7. **Carbohydrates (Molisch’s Test)**
 - 2ml extract + 10ml H2O + 2 drops Ethanolic α-naphthal (20%) +2ml H2SO4 (conc.)
 - Reddish violet ring at the junction

8. **Glycosides (Liebermann’s Test)**
 - 2ml extract + 2ml CHCl3 + 2ml CH3COOH Violet to Blue to Green coloration
 - Coumarins 2ml extract + 3ml NaOH (10%) Yellow coloration

9. **Alkaloids (Hager’s Test)**
 - 2ml extract + few drops of Hager’s reagent
 - Yellow precipitate

10. **Proteins (Xanthoproteic Test)**
 - 1ml extract + 1ml H2SO4(conc.) White precipitate
 - Emodins 2ml extract + 2ml NH4OH + 3ml Benzene
 - Red coloration

11. **Anthraquinones (Borntrager’s Test)**
 - 3ml extract + 3ml Benzene + 5ml NH3(10%)
 - Pink, Violet or Red coloration in ammonical layer

12. **Anthocyanins**
 - 2ml extract + 2ml HCl (2N) + NH3
 - Pinkish red to bluish violet coloration

13. **Leucoanthocyanins**
 - Turns 5ml extract + 5ml Isoamyl alcohol
 - Organic layer into Red

RESULTS & DISCUSSION

The data shown in the table-1, reveals the different plant species screening of aqueous/methanol extracts of different parts of seven medicinal plants viz., Mimousops elangi, Araucaria heterophylla, Callistemon lanceolatus, Capparis brevispinia, Cassytha filiformis, Solidago chinensis based on phytochemical tests. These tests reveal the presence of various bioactive secondary metabolites which might be responsible for their medicinal attributes[1,8,24]. The observations and inferences made in the phytochemical tests are presented as follows:

Results of different tests performed on the six medicinal plants:

Tannins: A green precipitate was observed in all the extracts indicating thereby the presence of tannins in all six medicinal plants analysed.

Flavonoids: A yellow coloration was also observed in all the extracts indicating thereby the presence of flavonoids in all six medicinal plants screened.

Terpenoids: A deep red color was observed in five extracts out of six except Callistemon lanceolatus.

Saponins: Persistent frothing on warming the extract of Cassytha filiformis indicated the presence of saponins in this plant only. The same extract with few drops of olive oil formed a soluble emulsion, confirming the presence of saponins.

Steroids: A reddish brown ring at the interface was observed only with the extract of cassytha filiformis out of six screened plants indicating the presence of steroids only in this plant.

Phlobatannins: Presence of a red precipitate in Solidago chinensis root juice only was taken as an evidence for the presence of phlobatannins in this.

Carbohydrates: Red violet ring appeared at the junction in most of the extracts was confirmed by the presence of carbohydrates except Auracaria heterophylla and Solidago chinensis.

Glycosides: Similarly, a color change from violet to blue to green confirming the presence of glycosides was also observed in all other extracts except Auracaria heterophylla and Solidago chinensis.

Alkaloids: A yellow precipitate was observed in three extracts confirming thereby the presence of alkaloids. Surprisingly, this time Mimousops elangi were also devoid of alkaloids in addition to Callistemon lanceolatus and Solidago chinensis.

Proteins: White precipitate formation which turns yellow on boiling was only observed in the extract of Cassytha filiformis and Mimousops elangi showing thereby the presence of proteins and confirming there by the absence of proteins in rest of the extracts.

Anthraquinones: Absence of a pink, violet or red coloration in ammoniacal layer indicated the absence of free anthraquinones in all the six extracts.

Anthocyanins: The absence of pink-red to blue-violet coloration indicated the absence of anthocyanins in all the six extracts.

Leucoanthocyanins: Absence of red color in organic layer indicated the absence of leucoanthocyanins in all the six extracts.
These secondary metabolites contribute significantly towards the biological activities of medicinal plants such as hypoglycemic, antidiabetic, antioxidant, antimicrobial, anti-inflammatory, anticarcinogenic, antimalarial, anticholinergic, antileprosy activities etc [3,10,11]. All the six selected medicinal plants for screening were found to possess tannins. Tannins have amazing stringent properties. They are known to hasten the healing of wounds and inflamed mucous membranes. Flavonoids are also present in all six selected medicinal plants as a potent water-soluble antioxidant and free radical scavenger, which prevent oxidative cell damage and also have strong anticancer activity [17,18,25]. It also helps in managing diabetes induced oxidative stress. Terpenoids have been found to be useful in the prevention and therapy of several diseases, including cancer [26,27,28]. Screening of six selected medicinal plants clearly reveals that the maximum classes of phytoconstituents are present in *Cassysya filliformis* extracts express positive response for highest number of phytochemical components (i.e. 9 components), the species like *Mimosops elengi, Araucaria heterophylla, Capparis brevispina* extracts were also shown the second highest number of phytochemical components (i.e. 6 components), the plant samples like *Wedelia chinensis & Callistemon lanceolatus* were shown the meager number of components when compare with previous plant samples i.e. the extracts of *Cassysya filliformis, Mimosops elengi, Araucaria heterophylla, Capparis brevispina*. The plant species (extracts) were subjected to various phytochemical screening tests were shown a good number of diversity while bearing the (higher – lower number of components), since these plants have been used in the treatment of different ailments, the medicinal roles of these plants could be related to such identified bioactive compounds [15,17]. Hence, the above mentioned plant extract/s could be explored for its highest
therapeutic efficacy by pharmaceutical companies in order to develop safe drugs for various ailments[27]. The quantitative analyses of these phytochemical components will be an interesting area for further study. The presence of certain class phytochemical components for their pharmaceutical utilization for exploration and evaluation of new drugs and formulations.

ACKNOWLEDGEMENTS
Authors are expressing their gratitude to the Chancellor and Vice-Chancellor for their encouragement. Authors are thankful to the Dean, Engineering and Management (Dean E & M), Vigman’s University, Vadlamudi, for providing facilities and encouragement. Authors are expressing their sincere thanks to Head, Department of Biotechnology for providing necessary facilities to carryout fieldwork and laboratory analysis. Authors are also thankful to the Management for providing necessary facilities.

REFERENCES